US4043028A - Method of fabricating composite superconductors - Google Patents
Method of fabricating composite superconductors Download PDFInfo
- Publication number
- US4043028A US4043028A US05/685,903 US68590376A US4043028A US 4043028 A US4043028 A US 4043028A US 68590376 A US68590376 A US 68590376A US 4043028 A US4043028 A US 4043028A
- Authority
- US
- United States
- Prior art keywords
- copper
- tin
- core
- niobium
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000002131 composite material Substances 0.000 title claims description 20
- 239000010955 niobium Substances 0.000 claims abstract description 59
- 229910052802 copper Inorganic materials 0.000 claims abstract description 39
- 239000010949 copper Substances 0.000 claims abstract description 39
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 37
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 36
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 21
- 239000000956 alloy Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 229910000597 tin-copper alloy Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910000838 Al alloy Inorganic materials 0.000 claims 2
- 238000005275 alloying Methods 0.000 claims 2
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 14
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000004020 conductor Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 229910001128 Sn alloy Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910020994 Sn-Zn Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 229910009069 Sn—Zn Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- KJSMVPYGGLPWOE-UHFFFAOYSA-N niobium tin Chemical compound [Nb].[Sn] KJSMVPYGGLPWOE-UHFFFAOYSA-N 0.000 description 1
- 229910000657 niobium-tin Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0184—Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/917—Mechanically manufacturing superconductor
- Y10S505/918—Mechanically manufacturing superconductor with metallurgical heat treating
- Y10S505/919—Reactive formation of superconducting intermetallic compound
- Y10S505/921—Metal working prior to treating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49014—Superconductor
Definitions
- This invention relates generally to methods of fabricating stabilized composite superconductors such as Nb 3 Sn.
- the common practice consists in juxtapositioning the superconductors with a non-superconductive support of very good heat and electrical conductivity and to effect a close thermal contact therebetween.
- a niobium tubular sheath containing a copper-tin solid solution alloy is embedded in a copper matrix having high conductivity. After this structure is coreduced to the desired size, it is wire-drawn and subjected to a heat treatment, causing a diffusion-reaction for forming Nb 3 Sn.
- Composites consisting of a copper-tin alloy containing less than 7 atomic percent tin can be reduced by cold working since these alloys have ductility to a certain extent.
- work-hardening of the alloy is so great that only about 50% reduction in area is possible in cold working.
- the process of producing a usable conductor involves numerous repeated working and heat treatment stages.
- Nb 3 Sn formed from the reaction between the copper-tin alloy and niobium has layers of irregularities, including some Nb 3 Sn islands dissolved in the copper-tin alloy, and contains discontinuities along the length of the product since the copper-tin alloy takes the liquid state at the reaction temperature required to form Nb 3 Sn (700° - 900° C).
- these and other objects of the invention are achieved by contacting one side of a niobium element with a tin based alloy through a copper layer and the other side with a highly conductive metal, such as copper or aluminum.
- the resulting composite product is coreduced to the desired size by drawing or rolling, and then submitted to a heat treatment causing tin to diffuse out of the tin based alloy into the copper, forming a copper-tin alloy which then brings about a reaction between niobium and tin to form an intermetallic superconductive composition.
- FIG. 1 is a schematic perspective view of one embodiment a composite structure according to the invention.
- FIG. 2 is a partial cross-sectional schematic view of multi-filamentary composite conductor formed of products as shown in FIG. 1;
- FIG. 3 is a schematic perspective view of one embodiment of a composite tape or ribbon according to the invention.
- FIG. 4 is a partial cross-sectional schematic view similar to FIG. 2 but showing another embodiment of a composite conductor formed in accordance with the present invention.
- a composite structure comprising a tin based alloy core sheathed with copper and a niobium tube jacketed with a ductile material having good thermal and electrical conductivity, in which the tin based alloy and the niobium tube are arranged coaxially with respect to one another.
- the tin based alloy is made of tin and other elements, such as Zn, Si, Sb, Pb, Al, Cu, Ga and Ge. These elements are added to strengthen the tin, although ductility or elongation of the alloy is preferably maintained above 20%.
- the concentration of these elements in the tin is preferably somewhat limited. From these considerations an optimum concentration is chosen of, for example, 15 atomic % Zn and 8 atomic % Cu for Sn-Zn and Sn-Cu alloys, respectively.
- a stock product 1 is shown, made of a tin based alloy core 2 surrounded by a copper jacket 3 and further surrounded by a niobium tube 4 and an outer copper jacket 5 formed of a copper or aluminum matrix which has good electrical and thermal conductivity.
- the stock product 1 is subsequently submitted to a wire-drawing step to provide a good mechanical contact between the constituent elements, such as the copper jacket 3 and the niobium tube 4, and between the copper jacket 3 and the tin-copper alloy core 2, and to obtain a compact wire-drawn product having the desired diameter.
- stabilized multi-filamentary superconductors may be made from a stock product as shown in FIG. 1.
- a plurality of shock products 1 resulting from the above-described manufacturing steps are assembled into a copper matrix 7 to form a multi-filamentary composite 6 which is thereafter submitted to a wire-drawing operation to obtain a compact assembly wherein a close contact exists between each individual outer copper jacket 5 and the copper matrix 7 as shown in FIG. 2.
- niobium tube 4 may be used as the materal alloyed with other elements, such as zirconium, for improving the critical current density of Nb 3 Sn.
- the stock product 1 may be subjected to an optional rolling operation to transform the product to the form of a compact roller ribbon 8 as shown in FIG. 3.
- the stock product may also be comprised, as shown in FIG. 4, of a copper core 11 clad with a niobium tube 12 which is in turn surrounded by a copper jacket 13.
- a tin-copper alloy tube 14 surrounds the copper jacket and is surrounded by a further tube 15 of a material such as aluminum or copper having good electrical and thermal conductivity.
- the resulting stock product 1' is embedded in a matrix 7 which is preferably substantially the same as that of FIG. 2.
- a multifilamentary composite structure 9 is formed which is similar to the structure 6 of FIG. 2.
- the product is submitted to a heat treatment which causes tin to diffuse out of the tin base alloy into the copper to form a copper-tin alloy and transforms the niobium into superconducting Nb 3 Sn by a reaction with tin at the interface between the niobium and the copper.
- the heat treatment comprises a heating of the product for a duration of from 2 hours to 100 hours at a temperature in the range from 600° - 750° C.
- the copper jacket 3 may be alloyed with other elements, such as nickel, for improving the critical current density of Nb 3 Sn.
- the copper jacket 3 which separates the niobium tube 4 and tin alloy core 2 serves to reduce the stepwise difference in the mechanical properties between the two and thus makes drawing and rolling processes practical.
- the presence of the copper jacket 3 is essential to obtain successful milti-filamentary Nb 3 Sn superconductors as small as 10 ⁇ m outer diameter.
- copper plays a catalytic role in the formation of Nb 3 Sn, allowing a reduction in the reaction temperature from 800° - 900° C (for the niobium-tin reaction) to 600° - 750° C for the present invention, and also reduces the required reaction time.
- the average concentration of a copper-tin alloy which forms at the initial stage of the heat treatment can be easily controlled by controlling the tin concentration of the tin base alloy and the wall thickness of the copper jacket.
- the critical current density of Nb 3 Sn is known to increase with the tin concentration in the copper-tin alloy which reacts with niobium.
- This invention provides a method to overcome this difficulty and also has the advantages of offering Nb 3 Sn conductors with high critical current densities.
- the critcal current density of Nb 3 Sn varies in general with the thickness of the Nb 3 Sn layer formed by the diffusion-reaction processes.
- the thicker the Nb 3 Sn layer the lower the critical current density.
- a thick Nb 3 Sn layer can be obtained with a higher critical current density compared to those obtained by conventional methods.
- a niobium tube with 4 ⁇ m wall thickness forms a 2 ⁇ m thick Nb 3 Sn layer after heat treatment at 700° C for 25 hours and carries a critical current density, 2 ⁇ 10 6 A/cm 2 at 4 tesla.
- a niobium tube with large inner diameter and wall thickness forms a 9.5 ⁇ m thick Nb 3 Sn layer after heat treatment at 700° C for 100 hours.
- Nb 3 Sn formed by conventional methods has only a 3.5 ⁇ m thick layer after heat treatment at 700° C for 100 hours and carries a critical current density of only 4 ⁇ 10 5 A/cm 2 .
- the advantages of using a tin base alloy are apparent for the formation of Nb 3 Sn with copper as a catalyst.
- the reaction between niobium and tin may be controlled by the thickness of the copper jacket and tin concentrations of the tin base alloy. During the reaction treatment, tin diffuses into the copper jacket to form a tin-copper alloy. By keeping the tin concentration in the alloy below 25 atomic percent, a uniform layer of Nb 3 Sn can be obtained.
- tin is confined inside niobium barriers throughout the whole fabrication processes. Since the copper matrix surrounding the niobium tubes is not contaminated by diffusion of tin, electrical and thermal conductivity of the copper matrix is kept high.
- the Nb 3 Sn conductor produced by this method is stabilized against flux jumps and its coil performance to produce high magnetic fields is satisfactory as expected from testing short samples.
- the unreacted outer layer of niobium serves to reduce losses when the conductor is operated with alternating current.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/685,903 US4043028A (en) | 1975-07-31 | 1976-05-10 | Method of fabricating composite superconductors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50092529A JPS5216997A (en) | 1975-07-31 | 1975-07-31 | Processing method of multi-superconductor |
US05/685,903 US4043028A (en) | 1975-07-31 | 1976-05-10 | Method of fabricating composite superconductors |
Publications (1)
Publication Number | Publication Date |
---|---|
US4043028A true US4043028A (en) | 1977-08-23 |
Family
ID=14056866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/685,903 Expired - Lifetime US4043028A (en) | 1975-07-31 | 1976-05-10 | Method of fabricating composite superconductors |
Country Status (4)
Country | Link |
---|---|
US (1) | US4043028A (en]) |
JP (1) | JPS5216997A (en]) |
DE (1) | DE2620271B2 (en]) |
GB (1) | GB1535971A (en]) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2835974A1 (de) * | 1977-09-12 | 1979-03-22 | Aicro Inc | Verfahren zur herstellung eines vieladrigen intermetallischen supraleiters |
US4224735A (en) * | 1979-03-23 | 1980-09-30 | Airco, Inc. | Method of production multifilamentary intermetallic superconductors |
US4377905A (en) * | 1978-06-02 | 1983-03-29 | Agency Of Industrial Science And Technology | Method for manufacturing a Nb3 Sn superconductor and method for manufacturing hollow superconducting magnet |
EP0169596A1 (en) * | 1984-06-27 | 1986-01-29 | Lips United B.V. | Method for the manufacture of a superconductor in the form of a single-filament or multi-filament wire or tape |
US5189260A (en) * | 1991-02-06 | 1993-02-23 | Iowa State University Research Foundation, Inc. | Strain tolerant microfilamentary superconducting wire |
US5926942A (en) * | 1993-04-02 | 1999-07-27 | Mitsubishi Denki Kabushiki Kaisha | Method for manufacturing superconducting wire |
US6649843B2 (en) * | 1999-12-15 | 2003-11-18 | Hitachi Cable, Ltd. | Composite conductor, production method thereof and cable using the same |
EP1701390A2 (en) | 2005-03-10 | 2006-09-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Precursor for fabricating Nb3Sn superconducting wire, and Nb3Sn superconducting wire, and method for fabricating same |
US20060216191A1 (en) * | 2005-03-24 | 2006-09-28 | Kabushiki Kaisha Kobe Seiko Sho | Method for manufacturing powder-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire |
US20060272145A1 (en) * | 2005-03-11 | 2006-12-07 | Alabama Cryogenic Engineering, Inc. | Method of producing superconducting wire and articles produced thereby |
US20080092992A1 (en) * | 2004-09-15 | 2008-04-24 | Takayoshi Miyazaki | Method for Producing Nb3Sn Superconductive Wire Material Using Powder Process |
US20140287929A1 (en) * | 2013-03-14 | 2014-09-25 | Bruker Eas Gmbh | Monofilament for the production of an Nb3Sn superconductor wire |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097514A (ja) * | 1983-10-31 | 1985-05-31 | 株式会社東芝 | 複合超電導線の製造方法 |
JP2573491B2 (ja) * | 1987-04-28 | 1997-01-22 | 昭和電線電纜株式会社 | Nb▲下3▼Sn超電導線の製造方法 |
DE102004035852B4 (de) | 2004-07-23 | 2007-05-03 | European Advanced Superconductors Gmbh & Co. Kg | Supraleitfähiges Leiterelement mit Verstärkung |
JP4034802B2 (ja) | 2005-11-22 | 2008-01-16 | 株式会社神戸製鋼所 | 超電導線材製造用NbまたはNb基合金棒およびNb3Sn超電導線材の製造方法 |
WO2021161491A1 (ja) * | 2020-02-14 | 2021-08-19 | 三菱電機株式会社 | 熱交換器の製造装置および熱交換器の製造方法、ならびに冷凍サイクル装置の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1025715A (en) * | 1962-12-17 | 1966-04-14 | Imp Metal Ind Kynoch Ltd | Method of obtaining an intermetallic compound of niobium and tin in fabricated form |
US3358361A (en) * | 1965-01-04 | 1967-12-19 | Gen Electric | Superconducting wire |
US3370347A (en) * | 1966-05-26 | 1968-02-27 | Ibm | Method of making superconductor wires |
US3618205A (en) * | 1967-04-27 | 1971-11-09 | Imp Metal Ind Kynoch Ltd | Method of fabricating a composite superconducting wire |
US3910802A (en) * | 1974-02-07 | 1975-10-07 | Supercon Inc | Stabilized superconductors |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424109B2 (en]) * | 1973-02-27 | 1979-08-18 | ||
JPS49107492A (en]) * | 1973-02-16 | 1974-10-12 | ||
JPS49130699A (en]) * | 1973-04-13 | 1974-12-14 |
-
1975
- 1975-07-31 JP JP50092529A patent/JPS5216997A/ja active Granted
-
1976
- 1976-05-07 DE DE2620271A patent/DE2620271B2/de not_active Ceased
- 1976-05-07 GB GB18885/76A patent/GB1535971A/en not_active Expired
- 1976-05-10 US US05/685,903 patent/US4043028A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1025715A (en) * | 1962-12-17 | 1966-04-14 | Imp Metal Ind Kynoch Ltd | Method of obtaining an intermetallic compound of niobium and tin in fabricated form |
US3358361A (en) * | 1965-01-04 | 1967-12-19 | Gen Electric | Superconducting wire |
US3370347A (en) * | 1966-05-26 | 1968-02-27 | Ibm | Method of making superconductor wires |
US3618205A (en) * | 1967-04-27 | 1971-11-09 | Imp Metal Ind Kynoch Ltd | Method of fabricating a composite superconducting wire |
US3910802A (en) * | 1974-02-07 | 1975-10-07 | Supercon Inc | Stabilized superconductors |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2835974A1 (de) * | 1977-09-12 | 1979-03-22 | Aicro Inc | Verfahren zur herstellung eines vieladrigen intermetallischen supraleiters |
US4377905A (en) * | 1978-06-02 | 1983-03-29 | Agency Of Industrial Science And Technology | Method for manufacturing a Nb3 Sn superconductor and method for manufacturing hollow superconducting magnet |
US4224735A (en) * | 1979-03-23 | 1980-09-30 | Airco, Inc. | Method of production multifilamentary intermetallic superconductors |
EP0169596A1 (en) * | 1984-06-27 | 1986-01-29 | Lips United B.V. | Method for the manufacture of a superconductor in the form of a single-filament or multi-filament wire or tape |
US5189260A (en) * | 1991-02-06 | 1993-02-23 | Iowa State University Research Foundation, Inc. | Strain tolerant microfilamentary superconducting wire |
US5330969A (en) * | 1991-02-06 | 1994-07-19 | Iowa State University Research Foundation, Inc. | Method for producing strain tolerant multifilamentary oxide superconducting wire |
US5926942A (en) * | 1993-04-02 | 1999-07-27 | Mitsubishi Denki Kabushiki Kaisha | Method for manufacturing superconducting wire |
US6649843B2 (en) * | 1999-12-15 | 2003-11-18 | Hitachi Cable, Ltd. | Composite conductor, production method thereof and cable using the same |
US20080092992A1 (en) * | 2004-09-15 | 2008-04-24 | Takayoshi Miyazaki | Method for Producing Nb3Sn Superconductive Wire Material Using Powder Process |
US7459031B2 (en) | 2004-09-15 | 2008-12-02 | Kabushiki Kaisha Kobe Seiko Sho | Method for producing Nb3Sn superconductive wire material using powder process |
US20060204779A1 (en) * | 2005-03-10 | 2006-09-14 | Kabushiki Kaisha Kobe Seiko Sho. | Precursor for fabricating Nb3Sn superconducting wire, and Nb3Sn superconducting wire and method for fabricating same |
EP1701390A2 (en) | 2005-03-10 | 2006-09-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Precursor for fabricating Nb3Sn superconducting wire, and Nb3Sn superconducting wire, and method for fabricating same |
US20060272145A1 (en) * | 2005-03-11 | 2006-12-07 | Alabama Cryogenic Engineering, Inc. | Method of producing superconducting wire and articles produced thereby |
US20060216191A1 (en) * | 2005-03-24 | 2006-09-28 | Kabushiki Kaisha Kobe Seiko Sho | Method for manufacturing powder-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire |
US7566414B2 (en) | 2005-03-24 | 2009-07-28 | Kabushiki Kaisha Kobe Seiko Sho | Method for manufacturing power-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire |
US20140287929A1 (en) * | 2013-03-14 | 2014-09-25 | Bruker Eas Gmbh | Monofilament for the production of an Nb3Sn superconductor wire |
Also Published As
Publication number | Publication date |
---|---|
JPS5516547B2 (en]) | 1980-05-02 |
JPS5216997A (en) | 1977-02-08 |
GB1535971A (en) | 1978-12-13 |
DE2620271B2 (de) | 1978-06-08 |
DE2620271A1 (de) | 1977-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4043028A (en) | Method of fabricating composite superconductors | |
US3465430A (en) | Method of making superconductor stock | |
US3954572A (en) | Method of manufacturing an intermetallic superconductor | |
US3665595A (en) | Method of manufacturing superconductive materials | |
US3838503A (en) | Method of fabricating a composite multifilament intermetallic type superconducting wire | |
US3996661A (en) | Method for the manufacture of a superconductor having an intermetallic two element compound | |
US4377905A (en) | Method for manufacturing a Nb3 Sn superconductor and method for manufacturing hollow superconducting magnet | |
US4195199A (en) | Superconducting composite conductor and method of manufacturing same | |
US4161062A (en) | Method for producing hollow superconducting cables | |
KR20060100421A (ko) | Ti 소스 로드를 사용한 (Nb,Ti)₃Sn 와이어의제조방법 | |
US6251529B1 (en) | Nb-Sn compound superconducting wire precursor, method for producing the same and method for producing Nb-Sn compound superconducting wire | |
US4055887A (en) | Method for producing a stabilized electrical superconductor | |
US3778894A (en) | PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE | |
US3570118A (en) | Method of producing copper clad superconductors | |
JPH0768605B2 (ja) | Nb▲下3▼Sn系超電導線材の製造方法 | |
US3836404A (en) | Method of fabricating composite superconductive electrical conductors | |
US5127149A (en) | Method of production for multifilament niobium-tin superconductors | |
US4084989A (en) | Method for producing a stabilized electrical superconductor | |
US4367102A (en) | Method for the manufacture of a superconductor containing an intermetallic compounds | |
US4532703A (en) | Method of preparing composite superconducting wire | |
US4153986A (en) | Method for producing composite superconductors | |
US3996662A (en) | Method for the manufacture of a superconductor having an intermetallic two element compound | |
US4031609A (en) | Method for the manufacture of a superconductor with a superconductive intermetallic compound consisting of at least two elements | |
US3868769A (en) | Method of making superconductors | |
US4215465A (en) | Method of making V3 Ga superconductors |